Beer Science Literature Review #2: On the Way to One Day Lagers

Today we’re going to go over an article from the journal Food Chemistry that came out in 2006 called “Low temperature brewing using cells immobilized on brewer’s spent grains” by Nikolaos Kopsahelis, Maria Kanellaki and Argyro Bekatorou.

Foreword by Me:

As some of you may have heard, there is a new technology dawning in the brewing world that even started trickling down even to the homebrewing level. I am talking about immobilized yeast. Some of you may have heard of a group giving away magic beads that will ferment your wort without having to deal with suspended yeast for homebrewer feedback. I contacted the group and they seemed happy to give me a sample to try and write a feedback on my blog, but suddenly disappeared and didn’t answer my emails anymore while giving out samples to others. In any case, as far as I know, the results are predictable – quick and clean fermentation, but the end product lacks the complexity of normal ale fermentation. This may seem like awesome new tech, but it actually goes back to the 1970s when scientists first tried to create these for ethanol production and wine making. Brewing industry quickly picked up on that and have been looking into possibility of using this technology to lower proaction costs. The original cell immobilization was done by S. Humphreys’ group in 1976 and they utilized metal hydroxides as the carrying matrix for immobilized cells. In 1992, a group from Greece under A. Koutinas isolated a strain of S. cerevisiae from a grape that was not only alcohol resistant, but also psychrotolerant (grows best at low temperature) and did not create unpleasant off-flavors during fermentation, making it an interesting candidate for wine and beer production. It became known as AXAZ-1 strain. By that time, it became apparent that metal based matrix is not ideal for cell immobilization and scientists started experimenting with organic materials, particularly those rich in cellulose. With recycling becoming more and more popular, beer scientists started looking at best ways to utilize the spent grain. Spent grain leftover from the mashing process is the largest byproduct of beer making process and provides a matrix rich in cellulose, protein and starch. It became quickly apparent that yeast can be easily immobilized on spent grain and the resulting mix was effective in fermenting wort. Most of the research focused on refining and optimizing this process was done in Greece, but with the financial crisis that has mostly ruined Greek economy, I’m afraid the progress has been delayed by at least a few years. The following article looks at fermentation properties of AXAZ-1 immobilized on spent grain. Overall the article is technical and concentrates on analysis aspects, but I’ll try to sum it up in general terms. As before, I claim no authorship of any of these studies and credit goes to the scientists who tirelessly worked on creating this paper.

Article Summary:
Use of immobilized cells has been studies for well over three decades with main goals being facilitation of continuous processing, shortening maturation time and production cost reduction. This process has already been used for commercial production of low alcohol beers as well as secondary fermentation. There are, however, several aspects to this that require improvement in order to become commercially valuable, not the least of which is consumer fears of new technologies. Others include quality of such yeast, preparation costs, handling and regeneration, consistent fermentation characteristics, dealing with contamination and maintenance of these cultures within the brewery.
One way of improving on some of these issues would be optimization of the carrying matrix on which the cells are immobilized. Researchers have used various food grade supports such as gluten pellets, processed cellulotic materials and even fruits, resulting in beers with good taste and aromas even when fermented at very low temperatures of 0-5˚C (32-41˚F). When selecting a good carrying matrix, one also has to consider availability and the ease with which it’s made. With recycling becoming more fashionable every day, researchers turned their sights on the spent grain. As the biggest brewing byproduct, it is something breweries are never short of, making it a very easily accessible material. Moreover, it is a material rich in fiber, proteins and lipids that is also 100% compatible with beer production. Spent grains have already been utilized as protein rich animal feed and mushroom growing substrate. European Social Fund funded efforts to upgrade spent grain usage in beer and alcohol fermentation, serving as a fermentation biocatalyst based on cell immobilization. Combining spent grain and cold-loving yeast, therefore, presented an interesting possibility, which was investigated in this paper.

Methods:  I omitted most of the technical stuff that would be of no interest to homebrewers.
– Preparation of the support and immobilization of cells: Spent grains were delignified (removal of lignin which gives plants their rigidity and woodiness) by boiling in 1% solution of NaOH for 3 hours. Delignified Brewer Spent Grains (DBSG) were then washed with water, drained and sterilized by autoclaving. Yeast was immobilized on the grain by suspending AXAZ-1 cells in 12% glucose synthetic medium and DBSG were mixed into that solution. CO2 produced during fermentation was sufficient enough to gently mix the grain. Fermentation was allowed to progress for 6-8 hours until all sugar has been consumed. The remaining liquid was decanted and the grain (with yeast cells now stuck to it) was washed twice with fresh glucose medium and used for brewing experiments.
– Fermentation: Biocatalyst and 1.048 SG wort were mixed in ratio of 1:2 weight:volume and fermented at 15˚C (59˚F) to adapt cells to wort. Following fermentations were carried out with successive temperature reductions to 10, 5 and 0˚C (50, 41 and 32˚F). At the end of each fermentation, the biocatalyst was washed with fresh wort and used to ferment the next batch for a total of 10 consecutive small batches (650mL). Green beers were immediately collected and analyzed for ethanol, residual sugar, free cells, diketones, dimethyl sulfide (DMS), bitterness, color and volatiles. Green beers were tasted by 10 non-trained people in accordance to taste test protocol, as well as by an industry trained taster from the Athenian Brewery.

Results:
– Fermentation: Attachment of yeast cells to DBSG was confirmed by electron microscopy (Figure 1). Fig1 Immobilized S. cerevisiae AXAZ-1 cells were effective at fermenting wort even at very low temperatures ranging from 0 to 5˚C (32 to 41˚F). Fermentation kinetics and routine industrial analyses of resulting beers are shown in Tables 1 and 2. Immobilized cells retained their stability from batch to batch even at very low temperatures and finished fermentation in times ranging from 1 day at 15˚C (59˚F) to 20 at 0˚C (32˚F). At all temperatures the fermentations reached terminal gravity and resulting alcohol levels ranged from 4.4 to 4.9% by volume, showing the effectiveness of this method in low temperature alcohol production. Beer productivities (29–615 g/l/d), and ethanol productivities (1.8–38.7 g/l/d) were high, and proportional to the temperature. The final free cell concentrations were low (0.4–1.6 g/l) and the beers had a fine clarity after the end of primary fermentation. Tab1

Diacetyl and 2,3-pentadione are fermentation byproducts responsible for butterscotch/toffee off-flavors in beer at concentrations above 0.5 mg/L, and lagers require a thorough diacetyl rest to reduce the concentration of these compounds after primary fermentation, which requires high storage capacity, cooling and high energy expenditure. Concentrations of these compounds were measured for each of the DBSG-immobilized beers. At all studied temperatures, the diacetyl and 2,3-pentadione concentrations in the green beers were to low (61–167 ppb and 32–109 ppb, respectively), decreasing with fermentation temperature (Table 2 and Fig. 2). At 0– 5 °C, the 2,3-pentadione content was about threefold lower than that at 15 °C, and at levels similar to those found in mature commercial products (about 30 ppb). Diacetyl in beers produced at 0–5 °C was about half that at 15 °C, which is about double the levels of commercial products (about 30 ppb), but within acceptable levels (<1 ppm).
Dimethyl sulfide (DMS) comes form a malt-derived compound that gets into the wort and gets processed by the yeast during fermentation. It has a very low taste threshold of around 33 ppb and is the primary contributor to the “lager” taste in beer. However, after it reaches a certain concentration, DMS contributes the “cooked veritable” flavors which aren’t so sought after by brewers. In the beers produced with DBSG-immobilized yeast, DMS concentrations varied from 11 to 37 ppm, which is lower than that of most matured commercial lagers (< 40 ppb) and matured beers in general (14-205 ppb). Not surprisingly, DMS concentration was reduces with lower fermentation temperatures and at 0˚C it was three times lower than at 15˚C (Table 2 and Figure 2). Fig2 Tab2
Fermentation temperatures did not affect bitterness levels (Table 2). Clarity of the beers after primary fermentation was fine and color values matched those of most commercial products.

- Volatiles Analysis: Volatiles were analyzed by gas chromatography (something that’s way, way, WAY out of homebrewers’ or even of commercial breweries’ league). It was found that the total higher alcohol content in the experimental beers was lower than that found in mature commercial products and was reduced as the fermentation temperature decreased. Specifically, 1-propanol, isobutanol and amyl alcohols at 0 °C were reduced by about 41%, 33% and 30%, respectively, compared to those in beers produced at 15°C (Fig. 3). Ethyl acetate concentration was reduced by 30% in 0˚C beers compared to 15˚C. Interestingly, the ratio of higher alcohols and esters remained practically the same at all fermentation temperatures. This means that while higher alcohols’ concentration decreased, so did the fruity ester content. Interestingly, isoamyl acetate (banana-like character) and ethyl caproate (wine-like and fruity character) production was the same between 5 and 15˚C fermentations, but decreased by ~50% when fermentation was carried out below 5˚C. Both were within desired concentration (0.12-0.67 mg/L and 0.07-0.42 mg/L, respectively) and considerably below the “too much” threshold. Acetaldehyde concentrations were stable in green beers at all fermentation temperatures (12.1-18.2 mg/l), which are higher than those found in mature commercial beers (~5 mg/L). Fig3
The group went on to analyze 80 more volatile compounds that are produced during fermentation and influence character of the resulting beer due to their low threshold (Table 4). Most of the identified compounds were esters (mainly ethyl esters of fatty acids and acetic esters of higher alcohols), which are usually found in most beers. The amount of total volatiles was higher in beers produced at 15 °C, indicating higher metabolic activity of the yeast and/or increased chemical transformations at warmer temperature. Miscellaneous compounds, that have relatively low threshold values and usually affect beer flavor with either their fruity, floral or caramel flavors, such as b-myrcene, limonene, linalool, b-damascenone, a-terpineol, anethole, geraniol, phenylethyl alcohol, 3-furaldehyde, 2-furanmethanol, dihydro-5-pentyl-2(3H)-furanone and 4-hydroxy-2-methyl-acetophenone, were also identified. Their amounts were about the same or slightly higher in beers produced at 15 °C, except phenylethyl alcohol and 4-hydroxy-2-methylacetophenone, whose amounts were considerably higher at 15 °C. Off-flavor compounds, such as hexanal (green-leaves odor) and 3-(methylthio)-1-propanol (rotten eggs) were detected in traces in both samples. The sulphur compounds 3-(methylthio)-1-propanol and DMS were found in higher amounts in beers produced at 15 °C. Some compounds such as acetic acid, 8-Nonenoic acid and nonanal were at higher concentration in beers fermented at 0˚C. Tab3Tab4

Conclusion:

These results demonstrate that DBSG is an interesting potential cell immobilization substrate for use in brewing and alcohol production industries. It meets the prerequisites for a cost effective industrial application, it is readily available, fully compatible with beer and is of food grade purity from the start. High fiber content gives the grain enough resistivity to stay intact during fermentation. Using cold-loving strain of yeast allowed significant reduction of fermentation time even at very low temperature. Interestingly, young beers fermented at 0-5˚C were characterized by tasters as better, with fine flavor and mature character. This is possibly due to lower concentrations of higher alcohols, diacetyl and DMS as well as reduced content of other volatiles. Tables 3 and 4 show that there is a strong impact of temperature on aroma compound production, though immobilization itself doesn’t affect these processes compared to free cell fermentation as been shown previously in other publication. Fine clarity of the beer right after primary fermentation combined with low vicinal diketone concentrations may possibly lead to elimination of maturation stage, resulting in significant reduction of production time and cost.

My Impressions:

Overall I thought this was an interesting article describing a technology that we may soon see widely available even on homebrewing level. What it comes down to is basically keeping the yeast from freely floating around as the beer ferments and instead keeping it as an easily separable mass within the fermentation vessel while relying on convection to ferment everything out.
Some things that caught my attention:
– The scientists grew yeast in glucose rich medium when getting them to stick to the processed grain before using that grain/yeast complex to ferment wort. This seems to be in direct conflict with the “indisputable homebrewer dogma” that yeast grown with simple sugars can’t ferment your beer well because they get used to processing only simple sugars. I thought about it now and again throughout my homebrewing life and could never really understand it. It isn’t like the genes that encode proteins necessary for breakdown of complex sugars go somewhere. This, of course, doesn’t mean that we should all make table sugar starters, but rather that it’s not such a dramatic effect that you beer won’t ferment out as some homebrew masters will swear to you while, I bet, they’ve never tried to do it themselves. I can see how the health of such culture would get affected due to fast waste buildup, but can’t see how fermentation capacity would be.
– They used a 1:2 – BSG:Wort ratio for their fermentations. That, my friends, is a LOT of grain. For example, if someone is crazy enough to try and do it at home with a 5 gal batch, they’d need about 21 POUNDS of grains with yeast stuck to it. It would be wet and fully saturated so there wouldn’t be any absorption and it would be easily separable from the liquid, but that’s a lot of volume!
– They fermented at temperatures as low as 32˚F! Yes indeed! And those beers apparently turned out really well with low “young lager” associated off flavors. This is very interesting in that this could really eliminate the lagering and diacetyl rest steps and thus save a lot of time and money.
– Low temperature fermentations produce less esters and higher alcohols. That’s not surprising to anyone, but what’s interesting is that psychrotolerant yeast strains can ferment just fine at temperatures so low that even the lager strains stop, fall asleep and precipitate out of solution. In those conditions, ester and higher alcohol production decreases even more, which means the resulting beers would be very malt and hop forward due to very low flavor contributions of the yeast. Just imagine a beer that’s even cleaner than a pilsner! I don’t even know what that would be like, but I’d sure love to find out.
– As with everything in life, there are two sides to this. One example of flaws associated with this method is high levels of acetaldehyde and some other off-flavor compounds that results from such super cold fermentations. That’s a serious concern, but I’m sure it’s only a matter of time before some other psychrotolerant Saccharomyces strain is discovered or even engineered that wouldn’t have these problems and we’ll have very clean and crisp almost-freeze-fermented lagers produced in just a few days.
– This article isn’t the freshest in this line of research, but I chose it because it offered nice explanation of the process and examination of flavor compounds produced during fermentation. I’m sure progress has been made since then and I’ve seen a paper or two on the topic that were as late as 2012 I think. Problem with those papers is that they’re in journals I have no access to. Let me know if you’d like to know more about the topic and I’ll try to dig around and see if there is something interesting to be found.
– Possible future outcome from this line of studies, at least in my view, could be creation of essentially “one-day lagers” that would be fermented in times much shorter than those of normal lagers and would require no or minimal conditioning and diacetyl rest. This would reduce production costs and time, meaning that the breweries would save money. One would hope, perhaps naively, that the saved money would go into something like using malt rather than rice sugar or some other “no flavor, more alcohol” stuff in creating such beers. Perhaps one day we’ll see a full bodied and flavorful, malty and delicious PBR or Coors…

About these ads

10 thoughts on “Beer Science Literature Review #2: On the Way to One Day Lagers

  1. I suspect that the reproduction of the journal article’s content is a violation of the copyright unless permission was obtained from the publisher.

    • I don’t think so.
      In my experience, if that was so, we’d have almost no science talks of any kind. What happens is that data from papers gets freely displayed in powerpoint presentations and on posters as long as the citation of the original article is given. Otherwise it would be impossible for everyone to go around trying to get permissions to show this figure or that figure.
      That’s how it works in science.

  2. I for one would be interested in your further research. My concern is not about producing lagers quickly and “clean” here concerns me that it ends up even more tasteless than my perception of the stuff is now. My love is for English style classic beers ranging from Bitters/Pale ales through to Milds, Stouts & Porters. What in your view would this type of yeast bring to these styles where the estery profiles are very much part of the attraction.

    • I don’t think this approach would be appropriate at all for English and Belgian ales where yeast-derived compounds are very important and often make the beer what it is.
      I think this is more of a lager oriented thing.

  3. Fred,
    So long as the material is referenced properly, there is no issue with reproducing parts of the article. This is commonplace within the scientific community – indeed, there is a growing trend in many western nations to require scientific articles stemming from publicly funded research be made freely available. The whole point of that is what you see here – a broader use of science by the public at large.

    bkyeast: have you seen this thread over at HBT:
    http://www.homebrewtalk.com/f163/yeast-immobilization-magic-beans-fermentation-404698/

    Someone is trying much the same thing, but using algenate (a carbohydrate) as the substrate. Initial impressions look good, although its not a method I see myself engaging in anytime soon…

    • Thank you Bryan for clarifying it up for our friend Fred here. Indeed, a lot of articles are already in free access or become free a short time after publication. Also, all transgenic animals and other organisms, technology and previous findings are by law free to obtain for any willing researcher as long as the initial research was publicly funded.
      As for HBT post, no, this is the first time I’ve heard about it and will have to read it. I don’t have much time for homebrewing boards this last year because, you know, science owns your existence at this point in my life and I don’t even have time to brew. In fact, I’m not even registered on homebrewtalk haha.
      But you’re right, it’s not something I’d engage in, but perhaps there are braver souls than you and me who’d be willing to try and maybe this little review could shed some light on what’s going on on the cellular level.
      By the way, I love your blog and read it regularly.
      You can ID yeast by sequencing, right? I’ve been dying to know what species my Cantillon isolates are. I, obviously can’t do it at home, and my lab is a developmental one so we don’t do almost any DNA work other than genotyping.

      • I can ID yeast by sequencing, and it works fairly well (although the results have often been a surprise). If you’d like we can arrange a yeast exchange, and as part of the deal I’ll promise to sequence the Cantillon isolates. I’ve looked at your list of banked yeasts, and I wouldn’t mind getting my hands on about half your collection!

        My full list of strains and the method I use to share yeasts can be found here:
        http://suigenerisbrewing.blogspot.ca/p/yeast-exchange.html

        I’m happy to share anything I have, and to send you sterile mailers for sending stuff back. If you’re interested fire me an email – my contact info (and how to get around my spam-guard) can be found in the above link.

  4. This is really awesome and crazy (to me) stuff, wow. I had no idea half this stuff was at all possible, so thanks for writing this up.

    I am still a bit confused by the matrix thing in this particular instance. I think I get the concept of the immobilized yeast matrix now, but I’m not clear as to why it’s tied to the research into this particular sort of yeast. Is this some reason this strain couldn’t simply be pitched the normal way? Or did this article just happen to be discussing both the yeast and the matrix technique at the same time?

    • It doesn’t have to be this strain only and can be done with any yeast. The point was to explore the possibility of super low temperature fermentation as well as how immobilization would affect the fermentation properties. I think the main purpose of immobilizing is to keep majority of the yeast from floating around during fermentation, resulting in a much clearer beer right after primary, which would reduce the conditioning and “cold crashing” period to get the yeast to settle out and achieve clarity of the finished beer faster.

      • Awesome, it sounds like there’s some definite potential there. If I can figure it out, I’d be very tempted to try this with Conan, which is a terrible flocculator. It’d be awesome to get the same attenuation but have the beer be clear almost instantly.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s